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1. MOTIVATIONS

Let /' be a formal power series. Padé approximants are rational functions
whose expansion in ascending powers of the variable coincides with f as far
as possible, that is, up to the sum of the degrees of the numerator and
denominator. The numerator and the denominator of a Padé approximant
are completely determined by this condition and no freedom is left.

If some poles of f are known, it can be interesting to use this infor-
mation. Padé-type approximants are rational functions with an arbitrary
denominator, whose numerator is determined by the condition that the
expansion of the Padé-type approximant matches the series f as far as
possible, that is, up to the degree of the numerator [1]. It is also possible
to choose some of the zeros of the denominator of the Padé-type
approximants (instead of all) and then determine the others and the
numerator in order to match the series f as far as possible. Such
approximants, intermediate between Padé and Padé-type approximants,
have been called higher order Padé-type approximants. Padé approximants
are a particular case of Padé-type approximants. In some cases Padé-type
approximants provide a better approximation of f than the classical Padé
approximants because the knowledge of the poles has been incorporated
into their construction. Now if some poles and some zeros of f are known
one can try to use this information and then determine the remaining poles
and zeros of the rational approximation in order to match the series f as
far as possible. Such approximants will be called partial Padé
approximants and their study is the purpose of this work. Particular cases
of approximants to the exponential function with prescribed denominators
are studied in [3].
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2. DEFINITION
Let
f©y=3 ¢ 1, c;eC.
=0

Let v, and w, be given polynomials of degrees & and r, respectively. Let p,,,
and g, be polynomials (to be determined) of degrees m and #, respectively.

We set
D(t) =1 v(r71)

W) =1tw(t7")
Pty =1"po(t™")
du(t)=1"q(t™")
B(t) = p,u(1) B,1)
O(1) =g,(1) w(t).
The polynomials p,, and ¢, will be determined such that

F([)——Q([)f(l)=0(!m+"+l).

The rational function P(¢)/Q(¢) will be called a partial Padé approximant
of fand it will be denoted by

{m, vi/n, w, A1)
If o, (t)=1"and w (t)=1, or if k=r=0, then
{m, v /n, w,},=[m/n],
If v (t)=1* (or if k=0) and if n=0 then
{m, v,/n, w,} = (mfr),.

If v (t)=1* (or if k=0) and if n>0 then {m, v,/n, w,}, is the Padé-type
approximant (m/n+ r) of the higher order m + » since its expansion coin-
cides with that of £ up to and including degree m + .

Thus partial Padé approximants generalize Padé and Padé-type
approximants.

3. CONSTRUCTION

Let us now study how these partial Padé approximants can be construc-
ted or, in other words, how the polynomials p,, and g, can be obtained. We
have
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Dol1) 0,(2) = G, (1) W,(2) fl1) = O™+ "+ 1)

or
Bonl8) = G, (1) W (1) f(0)B(2) = O(£m+ 7+ 1)

since v, has the exact degree k£ and thus 7,(0) #0.
Thus the construction is based on one of the following remarks

R1: ﬁm(t)/qn(t)z [m/n]fﬁ',,’ﬁk(t)
or
R,: Pl 0)G (1) WA2) = (m/n+ 1), (1)

(approximant of the higher order m + n).

In both cases the first step is to compute the coefficients of the series f/7,.
We set

D) =00t - 1, 1
g)=f(t)ftr(t)=8o+ g1+ ---.
Thus
coteytt - =(vo+ - ot Ngotgit+ )
Co="Vo&o
C =V &1+, 80
Ck=Do8x+V18k—11 - +Uk&o
Ckr1=V08k+1 T U18kt =+ + 0,8y
Cry2=008rv2T V181t - 0,82

Since 7,(0)#0, vy # 0 and these relations directly give the g/s.
Let us first use remark R,. We define the linear functionals g/) on the
space of complex polynomials by

g(j)(-xi)=gf+ja iz0

with the convention that g, , ,=0if i +j<0.
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From the theory of Padé-type approximants of higher order [1] we
know that ¢, must satisfy the conditions

g U (xg () wx)) =0, i=0,..,n—1

We have
m—n—r

(min+r)pst)="3  gt'+1" """ L a(0)jg,(e) w,(1)

i=0

with the convention that the sum is identically zero if m —n—r <0 and
with

qn(x) wr(x) B qn(t) wr(t)\j
X—1 / '

#(y=1""""'u(t~*) and u(t)=g<m~r—r+1>(

Thus

m-—-n—r

Pul=0,(00A0) T gt 4T i)
i=0

or
Dl1)=q,(t) w.t) _zn:_ gt T ().
i=0
Let us now use remark R,. We first have to compute the coefficients of
the series f#,/, =gW,. We set
w(t)=wy+ - +w, 1

hy=gOhw()=hy+h i+ ---.

Thus
ho+hit+ - =(wo+ - +w, t"){ge+g 1+ )
ho=wogo
hy=wo g+ W go
h,=wog, +w,g, 1+ - +Ww, g
by =wo &t wig+ - +w gy
hyia=wo8rintWi&rort o T W, g

which gives directly the A;s.
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We define the linear functionals AY) on the space of complex
polynomials by

WA xYy=h,,;, iz0
with the convention that #,, ;=0 if i+ <0. Since
Pu(0)/q,(1) = [m/n],(1)
we know that g, must satisfy the conditions
R+ D(xlg (x)) =0, i=0,.,n—1

We have

[mfndi) =%, bt + 0"+ 50/, (1

H

with the convention that the sum is identically zero if m —n <0 and with

o(t)=r""'v(z7')  and v(t)=h(mn+1>(‘1n(’2:;]n(t)>.

Thus

Pu0)=G,(1) Y hit'+1m "L (1)

i=0
or
(1) =q,(1) Y, hit™ " (1)
i=0

From the theory of Padé approximation we know that a unique ¢, exists if
the Hankel determinant

hy h I
HLD) _ 1 hZ hn
hn—lhn h2n~2

is different from zero. We shall assume in the sequel that this condition is
satisfied for all n. It ensures the existence and unicity of {m, v./n, w,}.
Both approaches must, of course, be equivalent. Indeed, since

R+ s)(xi) = g”)(xiw,(x) ),
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both sets of relations defining ¢, are the same. Moreover

qn(x) "Vr(x) — qn(t) ”Yr(x) + qn(t) W,.(x) B QH(t) wr(r)\
x—t /

:g(m»n*:u\» 1) (W,(x) qn('x) - qn(t)) + qn(t) g(mfnfr-e- 1) (‘Wr(x) - er{"})

X—t X—1

u(t)zg(m-nfrf l)(

and finally, using the preceding relation between the {unctionals
g(m—n\r+1} and h(m—n+1) we get

u(t)=v(t)+q,(t)g" "=+ (
x—t

]’Vr(-x) - wr( ! ))

Thus, since we have
m-—n—r

P =@ wlr) Y g™ ()

=q,(t) Y h "7 (),
i=0

it remains to prove that

mon . monor . w{x)—w. (¢

z hi_tm—n71=wr(t) z g: tm—n—r—t+g(m\n—r+l)( r( ) r( ))

=0 i=0 N T
We have

: L fwAx)—wte ;e
glm—"—r*—”<—(—)Z——[_-(_)>=U7O(gm;n+gmwn-lt+ +gm7n~r+2t z

F8m—n—r+i tril>+ T W it
Identifying the coefficients of the terms of the same degree we obtain

degreeo hm\nzwrgm—nRr_"(Wogm—n_l_ WLy gm—n~r-'~1>
degreel hm‘n71=wrgm—n—r—1+wr—1gm7nfr

+(W0gm—n~l+ +WrA2gm—n—r+1)
degreem —n  hy=wyg,.

Thus, since these relations are exactly those defining the As, the
property is proved and the constructions based on remark R, or R,
provide the same partial Padé approximant.

From the classical theory of Padé approximants we know that
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Z hit"+i ....... Z h; Pl
i=0 =
ﬁm(t): hm*n-}-[ ......... hm+1
B e, h
e 1
A (t) hm—n+l ------- hm+1
qn =
b e

Thus the construction of {m,v,/n, w,} needs the knowledge of
Coss Cm+n- Let us now give an example. We consider the series

1, 2, 17 o 62
= = —_ JE— —1 — -
fl(t)y=1g tt 1+3t +15t +315 +2835 +

which has zeros at +n, +2m, +3nx,... and poles at +n/2, +3%/2, +5n/2, ...
We shall take

w(t)y=t—mn/2 and 5, (t)y=t—m.

We have
go=—ln, g =-1r°  g,=—1/n(1/7*+1/3)
ho=1/2, hy= —1/2n, hy= —1/2n*+1/6,

and we finally obtain
(t—m)[3n+ (n*—6) 1]

{1’ 01/17 wl }f(t) = (2[‘— 7'[)[31t + (,,L,Z__ 3) t]'

t tg t/t {1, v/1, wi} (1) [2/11(e)=1+41%3

1.5 9.4009466 8.9493644 1.7500000

1 1.5574077 1.5305797 1.3333333

0.5 1.0926049 1.0895934 1.0833333

0.3 1.0311208 1.0304284 1.0300000

0.1 1.0033467 1.0033181 1.0033333
—-0.1 1.0033467 1.0033802 1.0033333
—-05 1.0926049 1.0994597 1.0833333

—1 1.5574077 1.7512451 1.3333333
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By construction {1, v,/1, w,} must give better results near the first zero and
pole of f. We have

t tg t/t {1, v/1, w } (1) F2/13,44)
1.6 —21.395332 —20.188416 1.8533333
1.7 —4.5274130 —4.2305380 1.9633333
2 - 1.0925199 —0.9854227 2.3333333
2.5 —0.2988089 —0.2478919 3.0833333
3.1 —0.0134247 —0.0094250 42033333
3.2 0.0182730 0.0012446 44133333
4 0.2894553 0.1192313 6.3333333

The second example is
fly=1-Log(l+t)=1—t+2—133+ ---

which has a zero at r=e—1 and a logarithmic branch point 1= —1.
Choosing w,(r)=t+ 1 and §,(t)=1+1—e, we get

[2—(1—e)1](t+1~e)
[2(1—e)+ (1 +2e—e*) r]{r+ 1)

L1, (=Q2—0)/(2+1).

{1, v,/1, “’1}/(’) =

t 1-Log(1 + ¢) {1, 0/1, wi} 1) {1/17.(0)
—0.9 3.3025850 4.6039730 2.6363636
—0.5 1.6931471 1.7097808 1.6666666
-0.3 1.3566749 1.3584556 1.3529411
-0.1 1.1053605 1.1053971 1.1052631

0.1 0.9046898 0.9046680 0.9047619

0.3 0.7376357 0.7372726 0.7391304

0.8 0.4122133 0.4100425 0.4285714

1.5 0.0837092 0.0821464 0.1428571

1.7 0.0067482 0.0065906 0.0810810

2.5 —0.2527629 —0.2416952 —0.1111111

4 —0.6094379 —0.5587768 —0.3333333

4. ERROR

From the theory of Padé approximation we know that

hm+”+1h(m,,,é_l;(x’lqn(-r))

h(t)— [m/n](t)= 7.40) 1—xt
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Multiplying both sides by #,(¢)/Ww,(¢) and using the above relation between
the functionals A" ~"+1 and g™ ~"~"*!) we obtain

iiiiiﬁ&&ﬂ (m—n—r+1)<fﬁiéflgézg)

S()—{m, v /n, w,}, ()= g,(t) W, () o

In a similar way from the other expressions of the error [1] we have

m+n+1x t . e

L) e (W) 43(5)
f(t)—{m,vk/n,wr}/(t)—mg( ’( 1—xt )

5. ALGEBRAIC PROPERTIES

Since the partial Padé approximants of f are related to the Padé
approximants of A, it is natural that they share some of their algebraic
properties.

Let e be the reciprocal series of f formally defined by

f(t)e(t)=1.

e is assumed to exist that is ¢, is assumed to be different from zero. We
obviously have

{m, ve/n, w,} (1) =1/{n, w,/m, v, }(2).
If we set F(¢)=tf(t), we know that

EP ()G (1) = [m + /1] (2).
Thus
{m+s, vi/n, w,.}p(6)=1"{m, v,/n,w,} (1)
The other properties of Padé approximants dealing with value transfor-

mations do not generalize to partial Padé approximants except for the
obvious one:

{m, vy/n, w,} (1) =a{m, ve/n, w.},(), for F(tr)=af(¢).

Let us now consider argument transformations.
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We set F(t)=f(at), a#0, V,(1)=10,(at), and W,(1)=W (ar). We have

{m’ Vk/nv Wr}l'"(t);_ {m’ Uk/ﬂ, w.’}f‘\at)

since if H(t)= h(at), we know t}_lat [{m/n] (1) =[m/n],(a2).
Now let F(t)=f(t*), s>0, V,(1)=5,(t°), and W,(t)=w (). We have
Vi,jsuch that i+j<s—1

{ms+ i9 Vk/ns +]’ Wr}F(t)z {n11 Uk/’na Wr}f(t;)

Let

at
1+ bt

F(t):f( ) I7k(t)=(1+bt)kﬁk<li!m)

and

~ {
W(t)=(1+bt)< W, (1 ib[)

with g #0. We have

ar
{n, Vifn, Wt p(t) = {n,v,/n, wk}f(ﬁl;\ .
'I;his property can be generalized with 7,(1) = (1 + bt) 6, (at/(1 + b)) and
W (t)={1+bt) w(at/(1+bt)). We have, f m+k=n+7r,

N\

[/ at
{m, Vin, W,} o(1) = {m, vifn, w,}, (TL’&) .

6. CONNECTION WITH INTERPOLATION

Before looking at partial Padé approximants we shall first show how the
cases of Padé-type and Padé approximants can be related to polynomial
interpolation and how their numerators can be directly expressed from the
functional ¢. This approach is different from that given in [17] since it starts
from the error formula.

For Padé-type approximants we have

_ 1 Pl ot DN
(P/Q)r(l)—c<1_xt)—ﬁq(t)C<x m)—‘ A0)0,(1)
1 (ﬁq(t)— Pt u,,(x))

" 5,(1) 1—xt
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Thus
. 1o, (t7 )=t xP 1t by (x)
n,,(t)—c( T
, T ()=t TP xP T p (x
w,,(t):t"ﬁ,,(t‘)zt”c( "() 1 q( )),

and we finally obtain

Py (x)— P oy (1)
X—1

w,,(t):c(

which generalizes a known formula when p=¢g— 1.
For Padé approximants we have

+g+1
P ( p_“lx"uq(x)

1
[”/"]f(’)”(l—xr)” 50\ =t

1 . <1Fq(t)—t’"”’+1)cp+1 Uq(x)> _

o,(1) 1 —xt

) — i (0)/5,(1)

Thus

-1 +q+1,.p+1
t () =PI X (x)
1 —xt

wp(t)=c<

1T (1) —t P T  xP ] vq(x))

wp(t)=t"wp(t—‘)=tpc< e

and we finally obtain

X’y (x)— ! vq(t))

X—1

w,(t)= t"c(

Let us now show that, due to the orthogonality property of v, in the case
of Padé approximants, both formulas for w, are the same.
For Padé-type approximants we have

w,(f)=c ((t”"vq(t)— r~ixP T4ty (x))

—-q
x(1+xt™ '+ ... +xq*‘t‘4“+—x—qt—T .
l—xt~
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But, for Padé approximants, we have

c(x? =9 xy (x)) =0, i=0,..,g—1

and thus

90 (1) Xt \
wif)=c|l—L " txP ity (x)
(1) <l—xt_1 f—xt ¥

I o ()=t x? o (x)
1 —xt™*

and finally we get

- Xty (x)—PT e (!))

' — q 9 q

w,(t)=1 c( < ,

which is the formula already obtained in the Padé case.

(P9 p (x)— 1?7 9* o (1))/(x — 1) is a polynomial of degree p in ¢ and p

in x. Thus the functional ¢ can be applied to it and w, is a polynomial of
degree p in 1 as expected.

In the same way (x*7 1v,,(x) — 'y (t))/(x—1) is a polynomial of
degree p+4 in f and p+ ¢q in x. Thus the functional ¢ can be applied to it
and we obtain a polynomial of degree p+¢ in ¢ in which, due to the
orthogonality property of v,, there are no terms of degree strictly less than
g. Therefore, when multiplied by 179, we get a polynomial of degree p in ¢
as expected.

Let us now study the connection with polynomial interpolation. Starting
again from the error formula we have

(p/q)(t) = c(R(x))

with

1 _ v (.‘c))
R“ _ 1—fp+1,p g+179 .
(x) 1—xt< g Tl1) )

Thus R is a polynomial of degree p in x. When p=g¢—1 it is the Hermite
interpolation polynomial of (1 —xz)~" at the zeros of v,.

The same is true for Padé approximants but, thanks to the orthogonality
property of v,, we have

c(R(x)) = c(R(x)),
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— I v,(x)
R = _ p+q+1_‘p+lq_ .
x) l—xt(1 ! * Eq(t))

We shall now look at partial Padé approximants. In Section 3 the
functionals A" **) and g' have been related. Let us now connect the
functionals ¢***' and g'*. From the relations between the ¢;s and the g;s
it is easy to see that

I x"y =g (x'v,(x)).
Let uy(x)=x"*(ug+u; x ' +u, x 2+ ---) be formally defined by
ve(x) up(x)=1.
That is
x Mo+ o Foex ) ugFu, x4 ) =1

and thus we have

Uy g =1
Uty +uvy=0
UgUp+ U U+ -+ +u0e=0
Uy O+t U+ -+ 0o=0

Thus since v, has the exact degree &, the series u, exists. We have, from the
preceding relation,

¢ I (x U (x)) = g9 (x0r(x) i)
and thus
g(x') = e iy (x)),
From the error formula of {m, v,/n, w,} we have
1 (1) w,(x) g.(x)
un, w ) (1)= - m—r+1 [ ZA4) 4ult)
(mewwmon ) 0= (=)~ e (e )

:c< 1 )_ () C(,,,+k,,+1)(wr(x) gn(x) “k(x)>
L—xt) §.(t)w.(1) 1—xt '




PARTIAL PADE APPROXIMATION 223
Thus {m, v;/n, w,},(t)=c(R(x)) with

E('X)= 1 <l—t'i+"+,l..5k{t)xm+kr+l
I —xt G.(1) ® (1)

w’r(x‘) q;«(x) uk(x) :

N

We also have
W, ()= ———
s b= g e

e (f?n(t) W) = " () X e (x) (o) ued )

1 —xt J

:ﬁm(t) 5k(l)/qn(t) ﬁ',,([).

Thus we obtain the expression of j,,(¢) D,(¢). Since
Ponl0) 06(8) = 17 (17 (1),

we have

Pakl) vle)

otk (t"_rqn(f) w(0) =7 () X e (x) gulx) Hk{x)\s
1—xr—! ).

’

fong (fm+k_'qn(f) w 1) — 1 o) XTI e () (%) “k(ﬁ)
L—xt™! '

We finally obtain

P m=,-nc("”’”"'*“fr(x)‘f»(x)uk<x>—t'"“"“w,(r)q,,inuk(n)

xX—!

Since c(x'ux(x))=g' ~*(x’) thus p,, is a polynomial of degree m in 1. If
k=r=0, then u,(x)=u, and this formula reduces to that of the classical
Padé case.

The orthogonality property of ¢, can be writien as

(xR e (x) gu(x) ue(x) =0,  i=0,.,n—L

Due to this property we have

{m, ve/n,w,} (1) = c(R(x)) = c(R(x)),
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where

— 1 tm+15k(t) mtk—r—n+
REx) = (1= 2K 0, 6) () ) ).

Ifm+k=n+r—1 we have

_ 1 ! U, (1)
RO = (1= et 0 g, ) )

which shows that R interpolates (1 —xt)~' in the Hermite sense at the
zeros of g,(x) w,(x) since, from the relation u,(x) v,(x)=1, it can be seen
that u,(x) has no zero because the polynomial v, is always finite.

From the expression of R we obtain a formula similar to the above
Padé-type case,

po(f)me <xm+kr~n+1wr(x) ga(X) u(x) — prtk—r—n+l w, () g.(1) uk(t)>’

x—t

which is equivalent to the preceding one by the orthogonality property of
qn-
Remark. We have

B(x) = g5 (xw, () = g9 rx " w,(x)) = g x' (x 1)),

Similarly ¢®(x‘) =g (xB (x~1)).

7. Two PARTICULAR CASES

Let us now choose i,()/W,(t) = [k/r],(¢). We have
@R (1) = (1) = 7 e D w (x)/(1 = x1)).

Dividing both sides by 7,, we get

tk+r+1 w (X)
=14t ks MR
At)=1+ e c (1 xt)'

Due to the block structure of the Padé table we have
[m/n](t)=1, for mn=0,..k+r

and thus, in that case
{m, Uk/n, u),}f(t) = [k/"]f(t).
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fm>k+rorn>k+r we have
{m, v, w3 (6) = [k/r) A0 [min],de).
Let us give an example. We again consider the series
f(t)=1—Log(l+1}.

We take f(¢)/5,(1) = [0/11,(£) = 1/(1 + 1). We have hy=1, %, =0, b, = —4,
hy=1%, and

[2/17,(1) = (6 + 2t — 312)/(6 + 21).

Thus
(2, vo/1, w1} (1) = (6 + 2 — 312)/(6 + 81 + 227,
¢ 2o/, wil 6)  Bv/Lw j () {Luy3, wilee)
—-0.9 42142857 2.9275619 2.9637199
—0.5 1.7000000 1.6898148 1.6901408
—0.3 1.3571428 1.3565224 1.3565319
—0.1 1.1053639 1.1053601 1.1053601
0.1 0.9046920 0.9046900 (.9046501
0.3 0.7377622 0.7376843 0.7376871
0.8 0.4152046 0.4155102 0.4158964
1.5 0.1000000 0.1198979 0.1230769
1.7 0.0287628 0.0631373 0.0663888
2.5 —0.2012987 —0.0468106 -0.0703812
4 —0.4857142 0.2592592 —(0.1200000
2—1124+6¢—-1°
{3, v,/1, u'}f(t)_Z_-k—tW
2—r 12+6¢
e Y vy

For the last two columns we have hy=1, h. =0, A,=0, A;=1/12,
hy=1/24, and [1/1](t)=(2—1)/(2+1).

Similarly we can choose
T (t)/ W, (1) = (k/r) (1)
We have
i ket hkmre ) [ WAX)
f(t)W,(t)—vk(z)=; 1l Hn)( -

1—xt

640/54;2-8
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Dividing both sides by #,, we get

Bty = 1+ et (Wr(x)).

b.(1) 1—xt

Due to the block structure of the Padé table we have

(m/n](t)=1, for m,n=0,.,k
and thus, in that case

{m, vi/n, w,} ()= (k/r),(2).

If m>k or n>k we have

{m, vi/n, w,} o (2) = (k/r) (£)[m/n],(2).
Let us again consider the series f(¢) = 1-Log(1 + ¢) with

T ()W, (1) = (1/2) (1) = (6 + 1)/(6 + Tt + 2¢7).

We Obtaln h0= 1, hl =0, /122 —%s h3= —%’ and

(6+1)(12 —t—4r?)
(6+71+205)(12—1)

{2, 0/, wy},(1)=

! {2, v/1, wy},(0)
-09 2.8932346
—0.5 1.6866666
—0.3 1.3561692
-0.1 1.1053563

0.1 0.9046868

03 0.7374581

0.8 0.4072759

L5 0.0510204

1.7 —0.0397779

2.5 —0.3852339

4 —1.0606060

In both cases the computation of {m,v,/n,w,} needs the knowledge of
Cos s Cm+n- Thus such partial Padé approximants have to be compared
with [p/q], where p+qg=m+n since they achieve the same order of
approximation.
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We have
[2/1],(t)=(6—2t— 12)/(6 + 41
[3/1](2)= (24 — 61— 61>+ 1°)/(24 + 181)
[2/21(1) = (6 — 22)(6 + 61 + £2).

t [2/13,(1) [3/13,(1) [2/2],(6)
—-0.9 2.9125000 3.0526923 3.1063829
—0.5 1.6875000 1.6916666 1.6923076
—03 1.3562500 2.3566129 1.3566433
—0.i 1.1053571 1.1053603 1.1053604

0.1 0.9046875 0.9046899 0.9046898

0.3 0.7375000 0.7376530 0.7376425

0.8 0.4086956 0.4133333 0.4125874

1.5 0.0625000 0.0955882 0.0869565

1.7 —0.0226562 0.0251465 0.0115243

2.5 —0.3281250 —0.1865942 —0.2385321

4 —0.8181818 —0.3333333 —10.5652173

In both cases the computation of the coefficients of 4 simplifies. We no
longer need the computation of the gs. From the expression of #, we have

iy +heaat+ - Nog+ - +0,25) =3 7w (x)) £
i—o

Identifying the coefficients we obtain
hozl, hl=...=hk=0

vohy =7 N (w,(x))
(k~r+1)(

Vohi w2+ Vil =c¢ xw,{x))

(hk—r+ 1)k,
Vohak o1+ 01 A+ oo +0he =C (x*w, (x))
BERURT -0 50 B I 2 I
Voltag 2+ Uihop i+ - F 0k =TT X w (X))
k- [k
Volaw 43+ Viha s o+ < Fophy 3= 2w (x))

(k—r+ 1) i = , .
TR X WAX)) = Wolhp i 1 WSt WG e
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If D,(¢t)/w (1) = [k/r],(2), due to the orthogonality property of w,, we have
c* =+ Y(xw,(x))=0 for i=0,..,r—1and thus , , ;= --- =h; ., =0. We
have

Doy 1= ¢ N xw, (x)) = “* Dow,(x))

Voltk v rpot ViPisy iy = C(k+”(xw,_(x))

_ Atk+ 1)k
Vohok sri1 F O Ay o+ s F VB, =C (x*w,(x))

— Nk k1T,
Vol yreat Uihopsrirt oo H 0l 0=0C (x*Fw,(x))

with

(k+ 1) 0 1) — ,
¢ (xXwx)=WoCrrriiv1 T WiChiriit o W, Chiin

Of course, #,(¢)/Ww,(t) can also be taken as the Padé-type approximant of
higher order s, k<s<k+r. In that case similar expressions and results
hold.

Let us now give an application of the above particular case of partial
Padé approximants to the estimation of the error of [k/r] (7).

From the general principles stated in [2] we know that a good estimate
of the error [k/r],(t1)—f(t) is given by [k/r]1,(¢)— [k/r],[m/n],(z) when
m and/or n is strictly greater than & +r.

To be more specific we know that

[k/r]f(t)_ {m, vk/n, wr}f(t)= [k/r]f([) _f(t)+ O(tm+n+1),

Lh/r1p(t) = {m, v,/n, w, } (1)
[h/r1 (6)—f(2)

=1 + O(tm+nfk~r)‘

Let us compare this estimation with Kronrod’s procedure. We shall take
k=r—1 and m+n=3r+1 with m and/or n>2r—1. Thus the simplest
case corresponds to the choice =0 and m=3r+ 1 and we have

{3r+1,0,_1/0, w, } (1) = [r = 1/r]()[3r+ 1/014(1)
{3r+1,0,_/0, w, } (1) = [r = 1/r](t) = [r = 1/r]{()(h3, ., (1) = 1),

with A, (1) — L =hy t* + --- + h;, "+, where the A/s are given by the
relations
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vohy, = c(x"w,(x))

VoM 41 01y, = c(x" T T (X))

ohs, (0 Ry, o+ - v, by =T e (X))
volts, + v Ay, F o v, By = (VW (X))

vohy, 1+ U Ryt s o,y = (X (),

These relations are quite similar to those giving the coefficients of the
Stieltjes polynomial ¥V, , ; in Kronrod’s method [2].
Let us give some numerical examples. For f(f)=¢‘ and r =1 we have

2 (1t 1
{4,1]0/0,w1}=—1—_5<§+'§+§>.

For r =2 we obtain

642t .
00, W} = 1 st o et |
{7, 0,/0, wa} = ! <7z+270 648+6804)

We have

t L0/1],(t)(h4(t) — 1) Kronrod’s procedure e —[0/1]

-3 —0.14062 x 10' —0.23684 —0.20021
—~2 —0.44444 —0.21429 —0.19800
—1.5 —0.25312 —0.18461 —0.17687
—-1.2 —0.18327 —0.15734 —0.15335
—1 —0.14583 —0.13433 —0.13212
—-0.8 —0.11141 —0.10724 —0.10623
—-0.5 —0.60764x107" —0.60301 x 10! —0.60136 x 101
-03 -028471x10"! —0.28431 x 10! —0.28412x 107}
—-01  —0.42538 x 102 —042536 x107* ~-0.42535x 1072
0.1  —059398x 102 —0.59400 % 1072 —0.59402 x 102
03 —0.78589x 10" —0.78637x 10" —0.78713x 16!
0.5 —0.34896 —0.349514 —0.35128
0.8 —0.27093 x 10! —0.27067 x 10! —0.27744 x 10

L.i 0.12317 x 102 0.12053 x 10? 0.13004 x 107
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t [1/2]4(¢)(h;(t)—1) Kronrod’s procedure e'—[1/2]
-3 0 0.51253 x 107! 0.49787 x 101
-2 0.20406 x 10! 0.24455x 10! 0.24224 x 10!
—1.5 0.12054 x 10! 0.12653x 10! 0.12604 x 10!
—1.2 0.69604 x 102 0.70900 x 102 0.70766 x 10 2
—1 042114 %107 0.42474 x 102 0.42431 x 1072
—-0.8 0.21682 x 10~ 0.21755x 102 0.21745x 103
—-0.5 0.46987 x 10~ 0.47009 x 10 3 0.47005 x 10~
—0.3 0.77476 x 10—* 0.77481 x 10 ~* 0.77480 x 10~*
—0.1 0.12246 x 103 0.12246 x 103 0.12246 x 103

0.1 0.15776 x 107 0.15776 x 103 0.15776 x 10 >

0.3 0.16555x 10 ~* 0.16556 x 103 0.16556 x 103

0.5 0.16620 x 10~ 0.16627 x 102 0.16624 x 10 2

0.8 0.16212x 10! 0.16258 x 10! 0.16239 x 10~*

1.1 0.85560 x 10! 0.86465 x 10~ 0.86017 x 10!

For f(tr)=1/r Log(1 + 1) and r=1 we have

{4, v,/0,

For r =2 we obtain

We have

{7, UI/O, VV2} =

w,}

6+ 3t

6461+ 1>

272

241t

1 t
2 127

* (_1___t_+
180 90

32
40

192

B 11¢
1260 630/

[0/1],(¢)(h4(r)—1) Kronrod’s procedure r ' Log(1+17)— [0/1]

—-0.9
—0.7

0.32266
0.13450
0.47917 x 10!
0.12185x 10!
0.97281x10°
0.72143x 103
0.50935 x 102
0.12083 x 10!
0.22413x 10~!
0.38591 x 10!
0.16339
0.43333
0.18300 x 10!
0.11012 x 10?
0.34572 x 10?

0.67805
0.18000
0.52910x 10~
0.12445x 10!
0.97358 x 1074
0.72084 x 103
0.49822 x 102
0.10929 x 10!
0.17294 x 10!
0.23499 x 10!
0.39318 x 10!
0.49020 x 10!
0.61224 x 10!
0.70028 x 10!
0.70342 x 10!

0.74025
0.18150
0.52961 x 10!
0.12446 x 10~
0.97358 x 10~
0.72085 x 10
049823 x 10>
0.10930 x 10 2
0.17300x 10!
0.23516 x 10~
0.39432x 10"
0.49306 x 10"
0.62098 x 10!
0.72638 x 10"
0.74841 x 10"
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We see that the error estimates given by the preceding method are bad out-
side the convergence domain of the series while Kronrod’s procedure still
provides good values.

We have

t [1/2]t)(h(1)—1) Kronrod’s procedure 1~ 'Log(l +#)—[1/2]

—0.8 0.62187x10™! 021873 0.21800
—0.7 0.10922x 10~! 0.16935x 10 * 0.16904 x 10"
—-0.3 0.14766 x 102 0.16794 x 102 0.16790x 10 ~°
—-03 0.10320x 103 0.10529 x 103 0.10529 x 107°
—0.1 0.72013 x 10~¢ 0.72035 x 1075 0.72035x 10~¢
G.1 0.43631x 10~° 0.43647 x 10~ 0.43647 x 10~°
0.3 0.22016x 10~* 0.22833x 107* 0.22833 x 10~
0.5 0.80437 x 10~* 0.11941 x 10~ 0.11940 x 10 °
0.7 —0.14958 x 10~° 032290 x 10~* 032287 x 10>
09 —0.23182x102 0.64040 x 10 0.64027 x 10~°
1.5 —0.11128 0.21664 x 102 0.21648 x 102
2 —0.83809 0.38567x 10~ * 0.38516 x 10~*
3 —0.13383 x 10? 0.75732x 10~* 0.75527x 10!
5 —0.39925 x 10° 0.14157 x 10! 0.14090 x 16!
7 —~0.35569 x 10° 0.18805 x 10~} 0.18713x 10°

In all these examples Kronrod’s method gives better estimates. As we
saw above g, satisfies g """ U(xig (x) w,(x)}=0 for i=0,..n— 1. If
n=r+1 and if w, is chosen such that

g7 (X wx) =0, i=0,.,r=1,

which means that w, is the polynomial of degree r orthogonal with respect
to g™~ 2", then

(m—Zr)(

g xiqr+l(x)”7r(x))=0’ 120, ey e

Thus ¢, is a so-called Stieltjes polynomial and for k=0 and m=2r we

again find the approximants encountered in Kronrod’s procedure since, in
that case, the functionals ¢ and g~ %" are identical.

8. INVERSE PADE-TYPE APPROXIMANTS

In Padé-type approximants (corresponding to k=s=0 in partial Padé
approximants) the denominators (that is the poles) of the approximants
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are arbitrarily chosen and then the numerators are obtained by imposing
that the expansion of the approximant matches the series as far as possible.

We shall now choose the numerators (that is the zeros) of the
approximants arbitrarily and then the denominators will be obtained by
imposing that the expansion of the approximant matches the series as far
as possible. Such approximants, which correspond to r=m=0, will be
called inverse Padé-type approximants, a name perfectly justified as we
shall see now.

Let e be the reciprocal series of f, formally defined by f(¢) e(¢)=1, and
let v, be an arbitrary polynomial of degree k. We have by definition of the
partial Padé approximants

{n, wo/0, v} (1) =e(t)+ O(" )
= (n/k).(1)

by definition and uniqueness of the Padé-type approximant (n/k), with the
generating polynomial v,. But

{0, vi/n, wo (1) = 1/{n, wo/0, v, } (1)

and thus

{O’ Uk/n’ WO}f(t) = 1/(n/k)e(t),

where the Padé-type approximant (n/k), is constructed from the generating
polynomial v,. The meaning of the given name clearly appears. Such
approximants will be useful for series with known zeros as, for example, sin
t Oor cos .

9. CONCLUSION

As shown by the numerical examples given above, partial Padé
approximants can be interesting if “good” choices of v, and w, are made.
Thus one of the main open questions concerns this choice. The second
important question is that of convergence. These two questions are cer-
tainly difficult ones as exemplified by our experience on Padé and Pade-
type approximants.
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